State channels with state assertions

Chris Buckland and Patrick McCorry

SOSTIENE PEREIRA QUE ÉL ERA UN BUEN CATÓLICO.

A **known set** of cooperating participants achieve local consensus, whilst relying on the blockchain to achieve **safety** and **liveness**

1. Participants commit funds to the channel under some initial conditions

- 1. Participants commit funds to the channel under some initial conditions
- 2. Parties sign new states off-chain

- 1. Participants commit funds to the channel under some initial conditions
- 2. Parties sign new states off-chain
- 3. If parties cannot cooperate off-chain, one party can force the continuation on chain

- 1. Participants commit funds to the channel under some initial conditions
- 2. Parties sign new states off-chain
- 3. If parties cannot cooperate off-chain, one party can force the continuation on chain
- 4. When parties move state back on-chain they are both given an opportunity to present their latest state "Dispute resolution"

So what's the problem?

A cooperation break down results in the usual costly **transaction fees**, and high latency

Accept any state as input, then wait for a fraud proof

SOSTIENE PEREIRA QUE ÉL ERA UN BUEN CATÓLICO.

SOSTIEME PEREIRA QUE ÉL ERA UN BUEN CATÓLICO,

SOSTIENE PEREIRA QUE ÉL ERA UN BUEN CATÓLICO.

Optimistic contracts trade tx fees for latency

State channels + optimistic contracts = cheaper disputes

How does it work?

Dispute resolution takes place via assertions instead of being fully computed

The result

Taking turns as part of the worst case dispute in a state channel is **independent** of the computational complexity of the application

Experiment built on Ethereum:

60,000 + 40n gas per state assertion

(where **n** is the number of input bytes)

A cautionary note..

• Malicious counterparty can now transition to any arbitrary state if a party is offline

• Fraud proofs are restricted the block gas limit

A cautionary note..

• Malicious counterparty can now transition to any arbitrary state if a party is offline

• Fraud proofs are restricted the block gas limit

A cautionary note..

• Malicious counterparty can now transition to any arbitrary state if a party is offline

• Fraud proofs are restricted the block gas limit

Related work

- Optimistic contracts https://medium.com/@decanus/optimistic-contracts-fb75efa7ca84
- TrueBit <u>https://people.cs.uchicago.edu/~teutsch/papers/truebit.pdf</u>
- Arbitrum <u>http://stevengoldfeder.com/papers/Arbitrum-USENIX.pdf</u>
- Battleships <u>https://nms.kcl.ac.uk/patrick.mccorry/battleship.pdf</u>

Thanks to

Ethereum Community Fund

